Stem Cells

Five reasons to choose StemRNA 3rd Gen Reprogramming Technology

Anca Haralambie, MSc / 4 December 2020

RNA Reprogramming is used globally for the generation of integration-free induced pluripotent stem cells (iPSCs) by researchers in biotech, academia, research hospitals and government agencies. This reprogramming method is gaining more and more interest and core labs and biotech companies focusing on regenerative medicine and GMP compatibility are adopting this technology and make it their standard.

REPROCELL’s latest evolution in the Stemgent RNA reprogramming kit series combines a unique non-modified RNA and microRNA technology to generate induced pluripotent stem cells (iPSCs). This novel StemRNA 3rd Gen Reprogramming Kit provides stem cell researchers with a new level of simplicity, versatility, and time saving, enabling cellular reprogramming of human fibroblasts, cells derived from blood and now urine even on difficult to reprogram patient samples.


StemRNA 3rd Generation Reprogramming Technology

Stemgent® StemRNA™ 3rd Gen reprogramming technology is the most rapid, robust, and clinically- relevant integration-free method on the market. We have listed five scientific reasons that this reprogramming technology is so popular with stem cell scientists across the globe.

StemRNA-3G-kit


1. Requires No Screening of iPSCs

Non-viral, non-DNA, non-integrating cellular RNA reprogramming allows for the generation of clinically-relevant iPSC lines without the need to screen clones for vector retention (footprint-free) — this saves you time and money! [See data in ref. 1]


2. Generates High Quality iPSCs

StemRNA-reprogrammed iPSCs are robust in culture and display very low clone-to-clone variability with normal karyology. In figure 1, reprogramming progression and iPSC characterization are shown on fibroblasts, UPCs and EPCs as performed by our scientist. The left figure illustrates the progressive speed and robustness of the reprogramming process using the StemRNA 3rd Gen technology. The right figure shows, pluripotency validation of generated iPSCs by marker expression and by in vitro and in vivo differentiation assays.iPSC-reprogramming-timeline

Figure 1: StemRNA 3rd Gen reprogramming technology provides high-quality, fully pluripotent iPSCs starting from skin (fibroblasts), blood, or urine


3. Yields Robust and Consistent Results

The combination of a unique microRNA cocktail with the use of non-modified RNAs increases the overall efficiency (Figure 2) and enables success for refractory or difficult-to-reprogram patient-derived samples across multiple different somatic cell types (Figure 1). 

StemRNA-3G-fig-2

Figure 2: Non-modified RNA leads to a greatly increased efficiency or iPSC generaton.  Human fibroblasts were either mock transfected, transfected with traditional modified RNA, or transfected with StemRNA 3rd Gen non-modified RNA. Colonies were stained for alkaline phosphatase and counted on day 19 after the start of transfections.


4. Uses Safe and Clinically Relevant Methods

The non-modified mRNA in the StemRNA 3rd Gen method yields high reprogramming efficiencies of between 1-4% of primary cells, depending on the cell type, with iPSCs ready to be clonally expanded by day 10-14.

StemRNA-3G-fig-3Figure 3: Time line for fibroblast reprogramming with StemRNA 3rd Gen technology


5. Safe and clinically compatible

The non-modified RNAs of our StemRNA 3rd Gen technology are synthesized using a GMP-compatible manufacturing process.  The reprogramming protocol and the iPSC maintenance medium (NutriStem® hPSC XF Medium) are chemically defined, xeno-free and serum-free.  NutriStem is produced under cGMP compliance, with an FDA drug master file available.

REPROCELL_labs_worldwideREPROCELL has reprogramming technical experts and stem cell laboratories on three continents

Figure 4: REPROCELL has reprogramming technical experts and stem cell laboratories on three continents


RNA Reprogramming Services at REPROCELL

REPROCELL offers StemRNA-3rd Gen Reprogramming Kits and custom iPSC production services to clients in industry and academia with over 15 years’ experience as leaders in stem cell research.

Our custom services provide iPSCs and differentiated functional cell types suitable for your own use in the commercialization of services and products as well as research purposes. The 3rd generation RNA technology is faster, more stable and footprint-free, allowing to deliver iPSCs in around half the time of its competitors.

How does our StemRNA 3rd Generation Reprogramming Kit compare with others?

Comparison of Non-Integrative Reprogramming Kits

Reprogramming technology Sendai
ThermoFisher
Episome
ThermoFisher
StemRNA
1st & 2nd Gen
REPROCELL
(Stemgent2)
StemRNA
3rd Gen
REPROCELL
(Stemgent2)
Non-integrative ?  
No vector retention × ×  
DNA-free/ Virus-free ×  ×    
No screening required × ×
Normal karyology and stability of iPSC ++3 +3  +++3 +++
Reprogramming efficiency ++3 
0.08%
+3
0.01%
++3 
1%
++
2-4% 
Reprograms refractory patient lines  × ×     
Time to usable iPSCs* 8-10 weeks
(Passage 10+)
10-12 weeks
(Passage 10+)
5-6 weeks
(Passage 4-5)
4 weeks
(Passage 4-5)
*Includes time needed for reprogramming, colony isolation/expansion, and vector clearance (if applicable)

References

  1. Schlaeger et al. A comparison of non-integrating reprogramming methods. Nature Biotechnology 33:58 (2015)
  2. Poleganov et al. Efficient reprogramming of human fibroblasts and blood-derived endothelial progenitor cells using non modified RNA for reprogramming and immune evasion. Human Gene Therapy 26:751 (2015)
  3. Liu et al. Comprehensive characterization of distinct states of human naive pluripotency generated by reprogramming. Nature Methods 14:1055 (2017)

Editors note: This article was first published in March 2018 and has since been update for accuracy and clarity.


Subscribe to recieve updates

Your Feedback