18 May 2018

Factors to consider when planning a iPSC reprogramming project

When you are considering beginning a project involving iPSC reprogramming, there are several factors to consider when choosing a reprogramming technology and a service provider.

Which reprogramming technology should I use?

There are many available technologies for generating iPSCs, each with their strengths and weaknesses (Table 1). It is important to make sure that the core technology matches with the goals of your project. Important variables to consider include time to usable iPSCs, quality of the iPSCs, and clinical relevance of the technology.


Why use mRNA for reprogramming?

Using mRNA for reprogramming provides the optimal combination of efficiency, speed, quality, and clinical relevance.

  • mRNA reprogramming provides the highest efficiency (number of iPSC colonies per starting target cell) of any common reprogramming method, yielding up to 4% efficiency. This can mean the difference between success and failure of the project when reprogramming target cells from actual patients, rather than controls chosen for ease of use.
  • mRNA reprogramming provides high quality iPSCs in the shortest time, allowing the project to quickly proceed to the next step. iPSCs reprogrammed with mRNA do not retain reprogramming vectors, meaning that no time-consuming vector screening is required, as mRNA is cleared from the cell within 18 to 24 h after transfection. mRNA-reprogrammed iPSCs show the lowest rates of genetic abnormalities such as aneuploidy, compared to the starting target cell, at the chromosomal level.
  • mRNA reprogramming allows easy access to clinically-relevant iPSCs, insuring that work won’t need to be repeated as you move from research to clinical development. Therapeutic mRNA is currently being investigated in clinical trials in several disease areas (1), showing the synthesis of clinical grade RNA is readily accessible. Other reagents used in RNA reprogramming are also available GMP grade.


Table 1. Strengths and weaknesses of different reprogramming technologies.

  StemRNA 3rd Gen Sendai virus Episomal Lentivirus
Efficiency  +++ ++ + +
Integration  No No No Yes
Vector retention  No Yes Yes Yes
Screening required  No Yes Yes Yes
Suitable clinical use  Yes No Yes No
Rate of aneuploidy  + ++ +++ ++


What is the StemRNA 3rd Gen Reprogramming Technology?

The REPROCELL Stemgent® StemRNA™ 3rd Gen Reprogramming Technology is our state of the art technology using only RNA to reprogram somatic cells into iPSCs. The reprogramming cocktail contains six reprogramming mRNAs (OCT4, SOX2, KLF4, c-MYC, NANOG, LIN28), three immune ablating mRNAs (E3, K3 and B18), and a proprietary mixture of microRNA.

  • Using 6 reprogramming factors in the cocktail ensures the highest efficiency and allows the technology to reprogram cells from a variety of starting sources, including skin (fibroblasts), blood and urine. The cocktail employs mRNAs with natural, non-modified nucleosides, rather than the modified ones typically used for synthetic mRNA, to ensure high translation and reprogramming efficiencies.
  • Use of the immune ablating mRNAs reduces the toxicity associated with cellular exposure to RNA, allowing for sustained translation of the reprogramming factors (Figure 1). This results in reduced cellular toxicity, increased translation efficiency, reduced degradation of the reprogramming mRNAs, and no need for supplementation with B18-R protein compared to common mRNA approaches.
  • Use of a microRNA cocktail primes cells for reprogramming and increases efficiency for the difficult to reprogram patient samples which are frequently encountered in real-world reprogramming projects.

The unique combination of these three components into our platform provides the highest efficiency and most robust reprogramming technology available.


Figure 1. The natural cellular defense mechanisms against foreign RNAs is blocked using the StemRNA 3rd Gen technology, by inhibiting Interferon α, RNA degradation, and stalled translation.




Is commercial sale of iPSC products allowed and what is my Freedom to Operate?

If the final goal of your iPSC program is commercialization, make sure that your service provider will work with your needs and timelines.

With REPROCELL standard services, internal R&D use or commercial sales of products or services using differentiated iPSCs or derivatives is allowed. There are no upfront fees, annual maintenance fees or royalties if the customer does not commercialize the product. Distribution (passing and sale) of undifferentiated iPSCs, or clinical use of iPSCs or derivatives requires additional agreements directly through REPROCELL. Please contact us for more details.


What are the details of the service package?

Not all service project quotes are the same. When comparing different service quotes, make sure that quotes provide a comparable level of service. Points to consider include

  • Where will the target cells (patient cells) come from?
  • What level of purification will I get with the iPSCs (individual clones or a multiclonal pool)?
  • What kind of QC data will I get with the cells?
  • Is there flexibility to choose other (non-standard) things in the reprogramming project.
  • Will I be kept up to date on the progress of the project and any roadblocks encountered?


What does REPROCELL’s iPSC reprogramming service include?

At REPROCELL, every service project is milestone-based and customizable to meet your needs. For iPSC services, REPROCELL can perform donor tissue collection, sample quarantine, derivation of primary cell lines, RNA-based iPSC reprogramming, expansion, characterization, cryopreservation, and differentiation into particular cell types. Our standard quality control package includes mycoplasma, infectious disease check, STR analysis and live-staining for certain pluripotency markers. Additional characterization services can be modified to fit the specific needs of the project. Examples of assays include: karyotyping, cell banking, genome-editing, teratoma formation, CGH/SNP arrays, etc.

REPROCELL assigns a dedicated study director to be your single point of contact handle logistics and keep you updated about the status of your project


Figure 2. REPROCELL’s Comprehensive Service offering.


About REPROCELL’S Custom iPSC Service Group

REPROCELL’s Custom iPSC Reprogramming Service group uses our Stemgent StemRNA 3rd Gen technology to generate integration-free, RNA-based, clinically relevant induced pluripotent stem cells. We can start from your cells, or we can more-than likely source the cells you need through our global human tissue procurement network.

If your company or institution needs customized iPSCs for research purposes or for use in commercial products or services, please check us out – our Frequently Asked Questions document (free PDF download) may give you the answers you are looking for right now. Of course, you’re also welcome to contact us if there’s anything else you need to know.


Find out more about REPROCELLs state-of-the-art iPSC reprogramming technology




Download our FAQ »
(PDF, 164 KB)


Inquire about REPROCELL’s Custom iPSC Reprogramming Service »



1. Heesen L et al. Annals Oncology 28, Issue suppl_11, 1 December 2017, mdx711.030.

Your Feedback